Background: Prognostic value or clinical implications of fluid status monitoring in liver cirrhosis are not fully elucidated. Tolvaptan, an orally available, selective vasopressin V2-receptor antagonist approved for hyponatremia in the United States and European Union. It is also used for cirrhotic ascites at a relatively low dose (3.75 mg to 7.5 mg) in Japan, exerts its diuretic function by excreting electrolyte-free water. We hypothesized that bioimpedance-defined dynamic changes in fluid status allow prediction of response of V2 antagonism and survival in cirrhotic patients.
Methods: In this prospective observational study, 30 patients with decompensated liver cirrhosis who were unresponsive to conventional diuretics were enrolled. Detailed serial changes of body composition that were assessed by using non-invasive bioimpedance analysis (BIA) devices, along with biochemical studies, were monitored at 5 time points.
Results: Sixteen patients were classified as short-term responders (53%). Rapid and early decrease of BIA-defined intracellular water, as soon as 6 h after the first dose (ΔICWBIA%-6 h), significantly discriminated responders from non-responders (AUC = 0.97, P < 0.0001). ΔICWBIA%-6 h was highly correlated with the change of BIA-derived phase angle of trunk, e.g. reduced body reactance operated at 50 kHz after 24 h of the first dose of tolvaptan. Lower baseline blood urea nitrogen and lower serum aldosterone were predictive of a rapid and early decrease of ICWBIA. A rapid and early decrease of ICWBIA in response to tolvaptan was also predictive of a better transplant-free survival.
Conclusions: BIA-defined water compartment monitoring may help predict short-term efficacy and survival in decompensated cirrhotic patients treated with tolvaptan.
Keywords: Ascites; Impedance; Liver cirrhosis; Vasopressin antagonism.