Rationale: Individuals with asthma have heightened antibody responses to rhinoviruses (RVs), although those specific for RV-C are lower than responses specific for RV-A, suggesting poor immunity to this species.Objectives: To ascertain and compare T-cell memory responses induced by RV-A and RV-C in children with and without asthma.Methods: Peripheral blood mononuclear cells from 17 children with asthma and 19 control subjects without asthma were stimulated in vitro with peptide formulations to induce representative species-specific responses to RV-A and RV-C. Molecular profiling (RNA sequencing) was used to identify enriched pathways and upstream regulators.Measurements and Main Results: Responses to RV-A showed higher expression of IFNG and STAT1 compared with RV-C, and significant expression of CXCL9, 10, and 11 was not found for RV-C. There was no reciprocal increase of T-helper cell type 2 (Th2) cytokine genes or the Th2 chemokine genes CCL11, CCL17, and CCL22. RV-C induced higher expression of CCL24 (eotaxin-2) than RV-A in the responses of children with and without asthma. Upstream regulator analysis showed both RV-A and, although to a lesser extent, RV-C induced predominant Th1 and inflammatory cytokine expression. The responses of children with asthma compared with those without asthma were lower for both RV-A and RV-C while retaining the pattern of gene expression and upstream regulators characteristic of each species. All groups showed activation of the IL-17A pathway.Conclusions: RV-C induced memory cells with a lower IFN-γ-type response than RV-A without T-helper cell type 2 (Th2) upregulation. Children with asthma had lower recall responses than those without asthma while largely retaining the same gene activation profile for each species. RV-A and RV-C, therefore, induce qualitatively different T-cell responses.
Keywords: T cells; asthma; rhinovirus; transcriptomics.