Nickel oxide doped natural phosphate (NP/NiO) nanoparticles were thermally synthesized for effective adsorption of Reactive Red 141 (RR141) as toxic dye model, characterization methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy combined with energy dispersive X-ray analysis(SEM-EDAX)and have been employed to identify the adsorbent. Surface area and pore size volume were determined by the Brunauer, Emmett and Teller (BET) method. Environmental factors such as pH, time of contact, initial RR141 concentration, the dose of adsorbent and solution temperature have been all put to the test to evaluate optimum adsorption activity. Thermal processing NP/NiO at 1% NiO doping percentage was effectual for exhibiting best adsorption behavior at an annealing temperature of 600 °C. Furthermore, batch experiments revealed significant adsorption activity reaching 96%. The maximal adsorption capacity was found to be 38.91 mg of RR 141 per 0.1 g of the adsorbent in only 40min of contact, at an initial colorant concentration of 20 mg L-1, pH 6 at ambient temperature and a volume of 100 ml. Langmuir isotherm model was more adequate to describe the adsorption process than the Freundlich model. The rate mechanism of the adsorption process was determined from the intraparticle diffusion model, Boyd plot revealed that the adsorption of the dye on the NP/NiO was mainly governed by film diffusion. Moreover, the dye adsorption was spontaneous and exothermic. The mechanism of adsorption may involve chemical adsorption through hydrogen bonding mechanism and electrostatic interactions between the dye molecules and the adsorbent. Thermal regeneration was feasible only for three cycles, the adsorbent also showed great potential for real textile wastewater treatment.
Keywords: Adsorption; Isotherms; Nickel oxide doped phosphate; Reactive red 141; Thermodynamics.
Copyright © 2020 Elsevier Inc. All rights reserved.