Antibiotic resistant and extended-spectrum β-lactamase producing faecal coliforms in wastewater treatment plant effluent

Environ Pollut. 2020 Jul:262:114244. doi: 10.1016/j.envpol.2020.114244. Epub 2020 Feb 22.

Abstract

Wastewater treatment plants (WWTPs) provide optimal conditions for the maintenance and spread of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this work we describe the occurrence of antibiotic resistant faecal coliforms and their mechanisms of antibiotic resistance in the effluent of two urban WWTPs in Ireland. This information is critical to identifying the role of WWTPs in the dissemination of ARB and ARGs into the environment. Effluent samples were collected from two WWTPs in Spring and Autumn of 2015 and 2016. The bacterial susceptibility patterns to 13 antibiotics were determined. The phenotypic tests were carried out to identify AmpC or extended-spectrum β-lactamase (ESBL) producers. The presence of ESBL genes were detected by PCR. Plasmids carrying ESBL genes were transformed into Escherichia coli DH5α recipient and underwent plasmid replicon typing to identify incompatibility groups. More than 90% of isolated faecal coliforms were resistant to amoxicillin and ampicillin, followed by tetracycline (up to 39.82%), ciprofloxacin (up to 31.42%) and trimethoprim (up to 37.61%). Faecal coliforms resistant to colistin (up to 31.62%) and imipenem (up to 15.93%) were detected in all effluent samples. Up to 53.98% of isolated faecal coliforms expressed a multi-drug resistance (MRD) phenotype. AmpC production was confirmed in 5.22% of isolates. The ESBL genes were confirmed for 11.84% of isolates (9.2% of isolates carried blaTEM, 1.4% blaSHV-12, 0.2% blaCTX-M-1 and 1% blaCTX-M-15). Plasmids extracted from 52 ESBL isolates were successfully transformed into recipient E. coli. The detected plasmid incompatibility groups included the IncF group, IncI1, IncHI1/2 and IncA/C. These results provide evidence that treated wastewater is polluted with ARB and MDR faecal coliforms and are sources of ESBL-producing, carbapenem and colistin resistant Enterobacteriaceae.

Keywords: AmpC; Antibiotic resistance; Extended-spectrum β-lactamase (ESBL); Multidrug resistance; Plasmids.

MeSH terms

  • Anti-Bacterial Agents*
  • Escherichia coli / genetics
  • Escherichia coli Infections*
  • Humans
  • Ireland
  • Plasmids
  • Wastewater
  • beta-Lactamases / genetics

Substances

  • Anti-Bacterial Agents
  • Waste Water
  • beta-Lactamases