Background: Voltage mapping is critical to define substrate during ablation. In ventricular tachycardia, abnormal potentials may be targets. However, wavefront of activation could impact local signal characteristics. This may be particularly true when comparing sinus rhythm versus paced rhythms. We sought to determine how activation wavefront impacts electrogram characteristics.
Methods: Patients with ischemic cardiomyopathy, ventricular tachycardia, and without fascicular or bundle branch block were included. Point by point mapping was done and at each point, one was obtained during an atrial paced rhythm and one during a right ventricular paced rhythm. Signals were adjudicated after ablation to define late potentials, fractionated potentials, and quantify local voltage. Areas of abnormal voltage (defined as <1.5 mV) were also determined.
Results: 9 patients were included (age 61.3 ± 9.2 years, 56% male, mean LVEF 34.9 ± 8.6%). LV endocardium was mapped with an average 375 ± 53 points/rhythm. Late potentials were more frequent during right ventricular pacing (51 ± 21 versus 32 ± 15, p < 0.01) while overall scar area was higher during atrial pacing (22 ± 11% vs 13 ± 7%, p < 0.05). In 1/9 patients, abnormal potentials were seen during a right ventricular paced rhythm that were not apparent in an atrial paced rhythm, ablation of which resulted in non-inducibility.
Conclusion: Rhythm in which mapping is performed has an impact on electrogram characteristics. Whether one rhythm is preferable to map in remains to be determined. However, it is possible defining local signals during normal conduction as well as variable paced rhythms may impart a greater likelihood of elucidating arrhythmogenic substrate.
Keywords: Ablation; Electroanatomic mapping; Substrate; Ventricular tachycardia.
Copyright © 2020 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.