Neuroinflammation is an important factor contributing to cognitive impairment and neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), ischemic injury, and multiple sclerosis (MS). These diseases are characterized by inexorable progressive injury of neuron cells, and loss of motor or cognitive functions. Microglia, which are the resident macrophages in the brain, play an important role in both physiological and pathological conditions. In this review, we provide an updated discussion on the role of ROS and metabolic disease in the pathological mechanisms of activation of the microglial cells and release of cytotoxins, leading to the neurodegenerative process. In addition, we also discuss in vivo models, such as zebrafish and Caenorhabditis elegans, and provide new insights into therapeutics bioinspired by neuropeptides from venomous animals, supporting high throughput drug screening in the near future, searching for a complementary approach to elucidating crucial mechanisms associated with neurodegenerative disorders.
Keywords: Biotechnology; Metabolic disease; Microglial; Neurodegenerative disease; Neuroinflammation; Venomous animals.
Copyright © 2020 Elsevier Ltd. All rights reserved.