Rhizobioaugmentation of Casuarina glauca with N-fixing actinobacteria Frankia decreases enzymatic activities in wastewater irrigated soil: effects of Frankia on C. glauca growth

Ecotoxicology. 2020 May;29(4):417-428. doi: 10.1007/s10646-020-02187-3. Epub 2020 Mar 12.

Abstract

The use of wastewater for irrigation in agroforestry is cost-effective for water management. It is well established that rhizospheric microorganisms such as N2-fixing bacteria are able to modulate rhizobioaugmention and to boost phyoremediation process. To date, no study has been conducted to evaluate biological effects of rhizobioaugmentation in Casuarina glauca trees induced by their symbiont N-fixing actinobacteria of the genus Frankia. The objective of the present study was to evaluate the main effects of rhizobioaugmentation on the biological activity in the C. glauca's rhizosphere and on C. glauca growth in soils irrigated with industrial wastewater. Two Frankia strains (BMG5.22 and BMG5.23) were used in a single or dual inoculations of C. glauca seedlings irrigated with industrial wastewater. Soil enzymes activity related to carbon, phosphorus, sulfur and nitrogen cycling were measured. Results revealed that the BMG5.22 Frankia strain increases significantly the size (dry weight) of C. glauca shoots and roots while dual inoculation increased significantly the root length. Surprisingly, β-glucosidase (BG), cellobiohydrolase (CBH), β-N-acetylglucosaminidase (NAGase), aryl sulfatase (AS), acid phosphatase (AP), alkaline phosphatase (AlP), glycine aminopeptidase (GAP), leucine aminopeptidase (LAP), and peroxidase (PER) activity in the rhizosphere decreased significantly in soils treated with the two strains of symbionts. This suggests no positive correlations between enzymatic activity and C. glauca growth.

Keywords: Casuarina glauca; Enzymatic activities; Frankia; Rhizobioaugmentation; Rhizosphere.

MeSH terms

  • Agricultural Irrigation / methods*
  • Fagales / microbiology*
  • Frankia / physiology*
  • Rhizosphere*
  • Wastewater / microbiology*

Substances

  • Waste Water