Machine learning for the prediction of severe pneumonia during posttransplant hospitalization in recipients of a deceased-donor kidney transplant

Ann Transl Med. 2020 Feb;8(4):82. doi: 10.21037/atm.2020.01.09.

Abstract

Background: Pneumonia accounts for the majority of infection-related deaths after kidney transplantation. We aimed to build a predictive model based on machine learning for severe pneumonia in recipients of deceased-donor transplants within the perioperative period after surgery.

Methods: We collected the features of kidney transplant recipients and used a tree-based ensemble classification algorithm (Random Forest or AdaBoost) and a nonensemble classifier (support vector machine, Naïve Bayes, or logistic regression) to build the predictive models. We used the area under the precision-recall curve (AUPRC) and the area under the receiver operating characteristic curve (AUROC) to evaluate the predictive performance via ten-fold cross validation.

Results: Five hundred nineteen patients who underwent transplantation from January 2015 to December 2018 were included. Forty-three severe pneumonia episodes (8.3%) occurred during hospitalization after surgery. Significant differences in the recipients' age, diabetes status, HBsAg level, operation time, reoperation, usage of anti-fungal drugs, preoperative albumin and immunoglobulin levels, preoperative pulmonary lesions, and delayed graft function, as well as donor age, were observed between patients with and without severe pneumonia (P<0.05). We screened eight important features correlated with severe pneumonia using the recursive feature elimination method and then constructed a predictive model based on these features. The top three features were preoperative pulmonary lesions, reoperation and recipient age (with importance scores of 0.194, 0.124 and 0.078, respectively). Among the machine learning algorithms described above, the Random Forest algorithm displayed better predictive performance, with a sensitivity of 0.67, specificity of 0.97, positive likelihood ratio of 22.33, negative likelihood ratio of 0.34, AUROC of 0.91, and AUPRC of 0.72.

Conclusions: The Random Forest model is potentially useful for predicting severe pneumonia in kidney transplant recipients. Recipients with a potential preoperative potential pulmonary infection, who are of older age and who require reoperation should be monitored carefully to prevent the occurrence of severe pneumonia.

Keywords: Kidney transplantation; deceased donor; machine learning; predictive models; severe pneumonia.