Effects of crystal size on methanol to hydrocarbon conversion over single crystals of ZSM-5 studied by synchrotron infrared microspectroscopy

Phys Chem Chem Phys. 2020 Sep 8;22(34):18849-18859. doi: 10.1039/d0cp00704h.

Abstract

Operando synchrotron infrared microspectroscopy (OIMS) was used to study the conversion of methanol over coffin-shaped HZSM-5 crystals of different sizes: large (∼250 × 80 × 85 μm3), medium (∼160 × 60 × 60 μm3) and small (∼55 × 30 × 30 μm3). The induction period, for direct alkene formation by deprotonation of surface methoxy groups, was found to decrease with decreasing crystal size and with increasing reaction temperature. Experiments with a continuous flow of dimethylether showed that evolution of the hydrocarbon pool and indirect alkene formation is also strongly dependent on crystal size. These measurements suggest that the hydrocarbon pool formation and indirect alkene generation should be almost instantaneous at reaction temperatures used in practical catalysis with crystal sizes typically ∼1 μm3.