Phospholipase A2 (PLA2) enzymes are small lipolytic hydrolases that can regulate immune responses through generation of Arachidonic Acid (AA), a precursor molecule of lipid mediators like prostaglandins, leukotrienes and thromboxanes. One of the family members of PLA2, secretory Phospholipase A2 Group IIA (PLA2G2A), was associated with different types of malignancies including prostate cancer. Elevated serum levels of PLA2G2A was found in prostate cancer (PCa) patients and associated with increased tumor grade in literature. 5'UTR regions have regulatory role in protein expression by controlling the accessibility of factors necessary for the translation initiation. Single nucleotide polymorphisms at 5'UTR regions have the potential to affect mRNA translation efficiency resulting in altered protein levels depending on structure and nucleotide content. Given that the 5'UTR polymorphism in PLA2G2A gene (rs11573156) is associated with increased serum levels of PLA2G2A, the association of this 5'UTR polymorphism with PCa susceptibility and metastasis was investigated in this study. Total of 261 PCa patients and 128 control individuals were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Individuals with heterozygous CG genotype was found to have significantly reduced risk of PCa metastasis with an Odds Ratio (OR) of 0.405 (p = 0.028, 95%CI = 0.181-0.906), compared to the carriers of homozygous CC genotype (p > 0.05) suggesting an anti-metastatic effect for the G allele. No association was found between PCa susceptibility and Gleason score (p > 0.05) in Turkish population.
Keywords: PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; PCa, Prostate cancer; PLA2G2A, Phospholipase A2 group IIA; SNP, single nucleotide polymorphism; UTR, untranslated region.
Copyright © 2020 Elsevier B.V. All rights reserved.