In this work, the fouling resistance of TFC (thin film composite) nanofiltration membranes have been enhanced using an electrostatically coupled SiO2 (silica dioxide) nanoparticles/poly(L-DOPA) (3-(3,4-dihydroxyphenyl)-l-alanine) antifouling coating. SiO2 nanoparticles were synthesized in different size ranges and combined with L-DOPA; and then coated as an anti-fouling layer on the membrane surface by recirculated deposition. Membranes were coated with S-NP (silica nanoparticles) in small (19.8 nm), medium (31.6 nm) and large (110.1 nm) sizes. The zwitterionic compound L-DOPA in the form of self-polymerized poly(L-DOPA) (PDOPA) helped with the attachment of the S-NP to the membrane surface. It was confirmed by AFM (atomic force microscopy) measurement that coating of membranes led to an increase in hydrophilicity and reduction in surface roughness, which in turn led to a 60% reduction in the adhesion force of the foulant on the membrane as compared to the neat membrane. The modified membranes experienced almost no flux decline during the filtration experimental period, whereas the unmodified membrane showed a sharp flux decline. The best coating conditions of silica nanoparticles resulting in enhanced anti-fouling properties were identified. The biofouling film formation on the membranes was evaluated quantitatively using the flow cytometry method. The results indicated that the modified membranes had 50% lower microbial population growth in terms of total event count compared to the neat membrane. Overall, the experimental results have confirmed that the coating of electrostatically coupled SiO2 nanoparticles and PDOPA (S-NP/PDOPA) on TFC-NF (nanofiltration) membrane surfaces is effective in improving the fouling resistance of the membranes. This result has positive implications for reducing membrane fouling in desalination and industrial wastewater treatment applications.