The logistic regression (LR) model for assessing differential item functioning (DIF) is highly dependent on the asymptotic sampling distributions. However, for rare events data, the maximum likelihood estimation method may be biased and the asymptotic distributions may not be reliable. In this study, the performance of the regular maximum likelihood (ML) estimation is compared with two bias correction methods including weighted logistic regression (WLR) and Firth's penalized maximum likelihood (PML) to assess DIF for imbalanced or rare events data. The power and type I error rate of the LR model for detecting DIF were investigated under different combinations of sample size, moderate and severe magnitudes of uniform DIF (DIF = 0.4 and 0.8), sample size ratio, number of items, and the imbalanced degree (τ). Indeed, as compared with WLR and for severe imbalanced degree (τ = 0.069), there were reductions of approximately 30% and 24% under DIF = 0.4 and 27% and 23% under DIF = 0.8 in the power of the PML and ML, respectively. The present study revealed that the WLR outperforms both the ML and PML estimation methods when logistic regression is used to evaluate DIF for imbalanced or rare events data.
Copyright © 2020 Marjan Faghih et al.