Graphene-Based Thermoacoustic Sound Source

ACS Nano. 2020 Apr 28;14(4):3779-3804. doi: 10.1021/acsnano.9b10020. Epub 2020 Mar 25.

Abstract

Thermoacoustic (TA) effect has been discovered for more than 130 years. However, limited by the material characteristics, the performance of a TA sound source could not be compared with magnetoelectric and piezoelectric loudspeakers. Recently, graphene, a two-dimensional material with the lowest heat capacity per unit area, was discovered to have a good TA performance. Compared with a traditional sound source, graphene TA sound sources (GTASSs) have many advantages, such as small volume, no diaphragm vibration, wide frequency range, high transparency, good flexibility, and high sound pressure level (SPL). Therefore, graphene has a great potential as a next-generation sound source. Photoacoustic (PA) imaging can also be applied to the diagnosis and treatment of diseases using the photothermo-acoustic (PTA) effect. Therefore, in this review, we will introduce the history of TA devices. Then, the theory and simulation model of TA will be analyzed in detail. After that, we will talk about the graphene synthesis method. To improve the performance of GTASSs, many strategies such as lowering the thickness and using porous or suspended structures will be introduced. With a good PTA effect and large specific area, graphene PA imaging and drug delivery is a promising prospect in cancer treatment. Finally, the challenges and prospects of GTASSs will be discussed.

Keywords: graphene; graphene synthesis; optimization strategy; photoacoustic effect; photoacoustic imaging; thermoacoustic effect history; thermoacoustic model; thermoacoustic sound source.

Publication types

  • Research Support, Non-U.S. Gov't