Background: With the growth in use of biotherapic drugs in various medical fields, the occurrence of anti-drug antibodies represents nowadays a serious issue. This immune response against a drug can be due either to pre-existing antibodies or to the novel production of antibodies from B-cell clones by a fraction of the exposed subjects. Identifying genetic markers associated with the immunogenicity of biotherapeutic drugs may provide new opportunities for risk stratification before the introduction of the drug. However, real-world investigations should take into account that the population under study is a mixture of pre-immune, immune-reactive and immune-tolerant subjects.
Method: In this work, we propose a novel test for assessing the effect of genetic markers on drug immunogenicity taking into account that the population under study is a mixed one. This test statistic is derived from a novel two-part semiparametric improper survival model which relies on immunological mechanistic considerations.
Results: Simulation results show the good behavior of the proposed statistic as compared to a two-part logrank test. In a study on drug immunogenicity, our results highlighted findings that would have been discarded when considering classical tests.
Conclusion: We propose a novel test that can be used for analyzing drug immunogenicity and is easy to implement with standard softwares. This test is also applicable for situations where one wants to test the equality of improper survival distributions of semi-continuous outcomes between two or more independent groups.
Trial registration: ClinicalTrials.gov NCT02116504.
Keywords: Drug immunogenicity; Genetic; Semi-continuous data; Semi-parametric; Two-part improper survival model.