Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction

J Am Coll Cardiol. 2020 Mar 24;75(11):1281-1295. doi: 10.1016/j.jacc.2019.12.069.

Abstract

Background: Better risk stratification strategies are needed to enhance clinical care and trial design in heart failure with preserved ejection fraction (HFpEF).

Objectives: The purpose of this study was to assess the value of a targeted plasma multi-marker approach to enhance our phenotypic characterization and risk prediction in HFpEF.

Methods: In this study, the authors measured 49 plasma biomarkers from TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) trial participants (n = 379) using a Multiplex assay. The relationship between biomarkers and the risk of all-cause death or heart failure-related hospital admission (DHFA) was assessed. A tree-based pipeline optimizer platform was used to generate a multimarker predictive model for DHFA. We validated the model in an independent cohort of HFpEF patients enrolled in the PHFS (Penn Heart Failure Study) (n = 156).

Results: Two large, tightly related dominant biomarker clusters were found, which included biomarkers of fibrosis/tissue remodeling, inflammation, renal injury/dysfunction, and liver fibrosis. Other clusters were composed of neurohormonal regulators of mineral metabolism, intermediary metabolism, and biomarkers of myocardial injury. Multiple biomarkers predicted incident DHFA, including 2 biomarkers related to mineral metabolism/calcification (fibroblast growth factor-23 and OPG [osteoprotegerin]), 3 inflammatory biomarkers (tumor necrosis factor-alpha, sTNFRI [soluble tumor necrosis factor-receptor I], and interleukin-6), YKL-40 (related to liver injury and inflammation), 2 biomarkers related to intermediary metabolism and adipocyte biology (fatty acid binding protein-4 and growth differentiation factor-15), angiopoietin-2 (related to angiogenesis), matrix metalloproteinase-7 (related to extracellular matrix turnover), ST-2, and N-terminal pro-B-type natriuretic peptide. A machine-learning-derived model using a combination of biomarkers was strongly predictive of the risk of DHFA (standardized hazard ratio: 2.85; 95% confidence interval: 2.03 to 4.02; p < 0.0001) and markedly improved the risk prediction when added to the MAGGIC (Meta-Analysis Global Group in Chronic Heart Failure Risk Score) risk score. In an independent cohort (PHFS), the model strongly predicted the risk of DHFA (standardized hazard ratio: 2.74; 95% confidence interval: 1.93 to 3.90; p < 0.0001), which was also independent of the MAGGIC risk score.

Conclusions: Various novel circulating biomarkers in key pathophysiological domains are predictive of outcomes in HFpEF, and a multimarker approach coupled with machine-learning represents a promising strategy for enhancing risk stratification in HFpEF.

Keywords: HFpEF; Penn Heart Failure Study; TOPCAT trial; biomarkers; fibrosis; inflammation; kidney; liver.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Biomarkers / blood*
  • Female
  • Heart Failure / blood*
  • Heart Failure / mortality
  • Humans
  • Machine Learning*
  • Male
  • Middle Aged
  • Risk Assessment
  • United States / epidemiology

Substances

  • Biomarkers