Carbazole based Electron Donor Acceptor (EDA) catalysis for the synthesis of biaryl and aryl-heteroaryl compounds

Org Biomol Chem. 2020 Apr 1;18(13):2510-2515. doi: 10.1039/d0ob00282h.

Abstract

A highly regioselective, carbazole based Electron Donor Acceptor (EDA) catalyzed synthesis of biaryl and aryl-heteroaryl compounds is described. Various indole and carbazole derivatives were screened for the Homolytic Aromatic Substitution (HAS) reaction. Tetrahydrocarbazole (THC) was very efficient for the HAS transformation and proceeded via a complex formation between diazonium salt and electron rich tetrahydrocarbazole. The UV-Vis spectroscopy technique has been used to confirm the complex formation. The in situ generated EDA complex even in a catalytic amount is found to be efficient for the Single Electron Transfer (SET) process without any photoactivation. Biaryl compounds, 2-phenylfuran, 2-phenylthiophene, and 2-phenylpyrrole and bioactive compounds such as dantrolene and canagliflozin have been synthesized in moderate to excellent yields.

Publication types

  • Research Support, Non-U.S. Gov't