The present study used calcium-based magnetic biochar (Ca-MBC), a novel material made through pyrolyzing rice straw impregnated with iron oxide (Fe3O4) and calcium carbonate (CaCO3) under oxygen-limited conditions, to reduce arsenic (As) accumulation in rice plants (Oryza sativa L.) through a 130-day pot experiment. The BCR (European Community Bureau of Reference) sequential extraction confirmed that Ca-MBC decreased the unstable fraction of As through transforming to the stable fraction at both tillering stage and maturity. The addition of Ca-MBC decreased while the pristine biochar increased the concentrations of NH4H2PO4- and BCR-extracted As. The μ-XRF test revealed that iron oxide on the Ca-MBC played an important role in decreasing As bioavailability. The addition of Ca-MBC greatly decreased As concentration in rice grains, mainly due to (1) the decreases in bioavailability of As in soil and (2) adsorption of As in pore water by Ca-MBC; and (3) the enhanced formation of iron plaque that acted as a barrier for plant As uptake. Furthermore, the addition of Ca-MBC at 1% but not 2% promoted plant growth. The results suggest that Ca-MBC can be used as an efficient material to lower As accumulation in grains and promote plant growth in rice paddy fields.
Keywords: As remediation; Fractionation; Iron plaque; Pore water; Rice grain.
Copyright © 2020 Elsevier B.V. All rights reserved.