3D ATAC-PALM: super-resolution imaging of the accessible genome

Nat Methods. 2020 Apr;17(4):430-436. doi: 10.1038/s41592-020-0775-2. Epub 2020 Mar 16.

Abstract

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA-fluorescence in situ hybridization (FISH), RNA-FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosome Painting
  • DNA / metabolism*
  • Genome, Human
  • Genomics / methods*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Image Processing, Computer-Assisted
  • In Situ Hybridization, Fluorescence / methods*
  • Microscopy / methods*
  • Sequence Analysis, DNA / methods

Substances

  • DNA