Objectives: Many countries use faecal immunochemical testing (FIT) to screen for colorectal cancer. There is increasing evidence that faecal microbiota play a crucial role in colorectal cancer carcinogenesis. We assessed the possibility of measuring faecal microbial features in FIT as potential future biomarkers in colorectal cancer screening.
Methods: Bacterial stability over time and the possibility of bacterial contamination were evaluated using quantitative polymerase chain reaction analysis. Positive FIT samples (n = 200) of an average-risk screening cohort were subsequently analysed for universal 16S, and bacteria. Escherichia coli (E. coli), Fusobacterium nucleatum (F. nucleatum), Bacteroidetes and Faecalibacterium prausnitzii (F. prausnitzii) by qPCR. The results were compared with colonoscopy findings.
Results: Faecal microbiota in FIT were stably measured up to six days for E. coli (p = 0.53), F. nucleatum (p = 0.30), Bacteroidetes (p = 0.05) and F. prausnitzii (p = 0.62). Overall presence of bacterial contamination in FIT controls was low. Total bacterial load (i.e. 16S) was significantly higher in patients with colorectal cancer and high-grade dysplasia (p = 0.006). For the individual bacteria tested, no association was found with colonic lesions.
Conclusions: These results show that the faecal microbial content can be measured in FIT samples and remains stable for six days. Total bacterial load was higher in colorectal cancer and high-grade dysplasia. These results pave the way for further research to determine the potential role of microbiota assessment in FIT screening.
Keywords: Microbiome; colorectal cancer; faecal occult blood test; screening.