High harmonic sources can provide ultrashort pulses of coherent radiation in the XUV and X-ray spectral region. In this paper we utilize a sub-two-cycle femtosecond fiber laser to efficiently generate a broadband continuum of high-order harmonics between 70 eV and 120 eV. The average power delivered by this source ranges from > 0.2 µW/eV at 80 eV to >0.03 µW/eV at 120 eV. At 92 eV (13.5 nm wavelength), we measured a coherent record-high average power of 0.1 µW/eV, which corresponds to 7 · 109 ph/s/eV, with a long-term stability of 0.8% rms deviation over a 20 min time period. The presented approach is average power scalable and promises up to 1011 ph/s/eV in the near future. With additional carrier-envelop phase control even isolated attosecond pulses can be expected from such sources. The combination of high flux, high photon energy and ultrashort (sub-) fs duration will enable photon-hungry time-resolved and multidimensional studies.