A dual infrared frequency comb spectrometer with heterodyne detection has been used to perform time-resolved electrochemical attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The measurement of the potential dependent desorption of a monolayer of a pyridine derivative (4-dimethylaminopyridine, DMAP) with time resolution as high as 4 μs was achieved without the use of step-scan interferometry. An analysis of the detection limit of the method as a function of both time resolution and measurement coadditions is provided and compared to step-scan experiments of an equivalent system. Dual frequency comb spectroscopy is shown to be highly amenable to time-resolved ATR-SEIRAS. Microsecond resolved spectra can be obtained with high spectral resolution and fractional monolayer detection limits in a total experimental duration that is 2 orders of magnitude less than the equivalent step-scan experiment.