Two new crystalline rotors 1 and 2 assembled through N-H⋅⋅⋅N hydrogen bonds by using halogenated carbazole as stators and 1,4-diaza[2.2.2]bicyclooctane (DABCO) as the rotator, are described. The dynamic characterization through 1 H T1 relaxometry experiments indicate very low rotational activation barriers (Ea ) of 0.67 kcal mol-1 for 1 and 0.26 kcal mol-1 for 2, indicating that DABCO can reach a THz frequency at room temperature in the latter. These Ea values are supported by solid-state density functional theory computations. Interestingly, both supramolecular rotors show a phase transition between 298 and 250 K, revealed by differential scanning calorimetry and single-crystal X-ray diffraction. The subtle changes in the crystalline environment of these rotors that can alter the motion of an almost barrierless DABCO are discussed here.
Keywords: THz frequency; displacive phase transitions; molecular machines; non-covalent interactions; relaxation.
© 2020 Wiley-VCH GmbH.