BMAL1 regulation of microglia-mediated neuroinflammation in MPTP-induced Parkinson's disease mouse model

FASEB J. 2020 May;34(5):6570-6581. doi: 10.1096/fj.201901565RR. Epub 2020 Apr 4.

Abstract

Dysfunction of the circadian rhythm is one of most common nonmotor symptoms in Parkinson's disease (PD), but the molecular role of the circadian rhythm in PD is unclear. We here showed that inactivation of brain and muscle ARNT-like 1 (BMAL1) in 1-methyl-4-phenyl-1,2,4,5-tetrahydropyridine (MPTP)-treated mice resulted in obvious motor functional deficit, loss of dopaminergic neurons (DANs) in the substantia nigra pars compacta (SNpc), decrease of dopamine (DA) transmitter, and increased activation of microglia and astrocytes in the striatum. Time on the rotarod or calorie consumption, and food and water intake were reduced in the Bmal1-/- mice after MPTP treatment, suggesting that absence of Bmal1 may exacerbate circadian and PD motor function. We observed a significant reduction of DANs (~35%) in the SNpc, the tyrosine hydroxylase protein level in the striatum (~60%), the DA (~22%), and 3,4-dihydroxyphenylacetic acid content (~29%), respectively, in MPTP-treated Bmal1-/- mice. Loss of Bmal1 aggravated the inflammatory reaction both in vivo and in vitro. These findings suggest that BMAL1 may play an essential role in the survival of DANs and maintain normal function of the DA signaling pathway via regulating microglia-mediated neuroinflammation in the brain.

Keywords: circadian rhythm; dopaminergic neurons; neuroinflammation; nonmotor symptoms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine / adverse effects*
  • ARNTL Transcription Factors / physiology*
  • Animals
  • Disease Models, Animal*
  • Dopaminergic Neurons / immunology*
  • Dopaminergic Neurons / metabolism
  • Dopaminergic Neurons / pathology
  • Inflammation / etiology
  • Inflammation / metabolism
  • Inflammation / pathology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Microglia / drug effects
  • Microglia / metabolism
  • Microglia / pathology*
  • Neurotoxins / toxicity
  • Parkinson Disease / etiology
  • Parkinson Disease / metabolism
  • Parkinson Disease / pathology*

Substances

  • ARNTL Transcription Factors
  • Bmal1 protein, mouse
  • Neurotoxins
  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine