As a class of covalently closed non-coding RNAs, circular RNAs (circRNAs) are key regulators in various malignancies including osteosarcoma (OS). In the present study, we found that circular RNA PVT1 (circPVT1) was up-regulated in OS and correlated with poor prognosis of patients with OS. Functionally, we showed that knockdown of circPVT1 suppressed OS cells metastasis. In addition, we found that (forkhead box C2) FOXC2 was a downstream gene in circPVT1-mediated metastasis in OS cells. We demonstrated that circPVT1 promoted OS cells metastasis via post-transcriptionally regulating of FOXC2. Furthermore, we revealed that microRNA 526b (miR-526b) was a key bridge which connected circPVT1 and FOXC2. We showed that miR-526b was down-regulated in OS tissue and cell lines. Through a transwell assay, we found that miR-526b suppressed OS cells metastasis by targeting of FOXC2. We also showed that miR-526b targeted circPVT1 via similar mircoRNA response elements (MREs) as it did for FOXC2. Finally, we proved that circPVT1 decoyed miR-526b to promote FOXC2-mediated metastasis in OS cells. In brief, our current study demonstrated that circPVT1, functioning as an oncogene, promotes OS cells metastasis via regulation of FOXC2 by acting as a ceRNA of miR-526b. CircPVT1/miR-526b/FOXC2 axis might be a novel target in molecular treatment of OS.
Keywords: FOXC2; circPVT1; metastasis; miR-526b; osteosarcoma.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.