Background: Magnetic resonance imaging (MRI) has limited accuracy in detecting pelvic lymph node (PLN) metastasis. This study aimed to examine the use of intravoxel incoherent motion (IVIM) in classifying pelvic lymph node (PLN) involvement in cervical cancer patients.
Methods: Fifty cervical cancer patients with pre-treatment magnetic resonance imaging (MRI) were examined for PLN involvement by one subspecialist and one non-subspecialist radiologist. PLN status was confirmed by positron emission tomography or histology. The tumours were then segmented by both radiologists. Kruskal-Wallis tests were used to test for differences between diffusion tumour volume (DTV), apparent diffusion coefficient (ADC), pure diffusion coefficient (D), and perfusion fraction (f) in patients with no malignant PLN involvement, those with sub-centimetre and size-significant PLN metastases. These parameters were then considered as classifiers for PLN involvement, and were compared with the accuracies of radiologists.
Results: Twenty-one patients had PLN involvement of which 10 had sub-centimetre metastatic PLNs. DTV increased (p = 0.013) while ADC (p = 0.015), and f (p = 0.006) decreased as the nodal status progressed from no malignant involvement to sub-centimetre and then size-significant PLN metastases. In determining PLN involvement, a classification model (DTV + f) had similar accuracies (80%) as the non-subspecialist (76%; p = 0.73) and subspecialist (90%; p = 0.31). However, in identifying patients with sub-centimetre PLN metastasis, the model had higher accuracy (90%) than the non-subspecialist (30%; p = 0.01) but had similar accuracy with the subspecialist (90%, p = 1.00). Interobserver variability in tumour delineation did not significantly affect the performance of the classification model.
Conclusion: IVIM is useful in determining PLN involvement but the added value decreases with reader experience.
Keywords: Cervical Cancer; Diffusion-weighted imaging; Intravoxel incoherent motion; Lymph node metastasis; Magnetic resonance imaging; Perfusion.