Introduction: Holmium:YAG(Ho:YAG) is currently the standard for lithotripsy. Superpulsed Thulium Fiber Laser(TFL) has been evaluated as an alternative for lithotripsy, using laser fibers with core-diameters(CDF) down to 50 µm and additional available settings suitable for "dusting" technique. This in-vitro study compared ablation rates, fissures and fragments' size with 150µmCDF or 272µmCDF with different laser settings using TFL and Ho:YAG.
Methods: 150CDF and 272CDF were compared using three settings for TFL "fine dusting"(FD:0.15 J/100 Hz); "dusting"(D:0.5 J/30 Hz); "fragmentation"(Fr:1 J/15 Hz) and Ho:YAG(D and Fr). An experimental setup consisting of immerged 10 mm cubes of artificial hard(H) or soft(S) stone phantoms was used with a 20 s' lasing time and a spiral trajectory, in contact mode. Fragments (acquired through sieves) and stones were observed under optical microscopy before three-dimensional scanning to measure fragments and fissures(DOF) mean diameters and ablation volumes.
Results: Ablation volumes in with 150CDF-TFL and 272CDF-TFL were higher than those for 272CDF-Ho:YAG in both "dusting" (twofold and threefold) and "fragmentation"(1,5-fold and twofold). "Fine dusting" ablation rates with 150CDF-TFL and 272CDF-TFL were respectively at least 1,5-fold and twofold higher than those for 272CDF-Ho:YAG in "dusting". 150CDF produced significantly smaller DOF than 272CDF in all settings against S and H except in fragmentation. 150CDF produced lower fragments' diameter than 272CDF in all settings except dusting.
Conclusion: These preliminary studies demonstrate that at equal settings and CDF, TFL ablation rates are at least two-fold higher than those with Ho:YAG. 150CDF produces smaller fissures and fragments (that meets the definition of "dusting" lithotripsy) than 272CDF and higher ablation volumes than Ho:YAG.
Keywords: Endourology; Laser; Lithotripsy; Thulium fiber laser.