A Na+ conducting hydrogel for protection of organic electrochemical transistors

J Mater Chem B. 2018 May 14;6(18):2901-2906. doi: 10.1039/c8tb00201k. Epub 2018 Apr 25.

Abstract

Organic electrochemical transistors (OECTs) are being intensively developed for applications in electronics and biological interfacing. These devices rely on ions injected in a polymer film from an aqueous liquid electrolyte for their operation. However, the development of solid or semi-solid electrolytes are needed for future integration of OECTs into flexible, printed or conformable bioelectronic devices. Here, we present a new polyethylene glycol hydrogel with high Na+ conductivity which is particularly suitable for OECTs. This novel hydrogel was synthesized using cost-effective photopolymerization of poly(ethylene glycol)-dimethacrylate and sodium acrylate. Due to the high water content (83% w/w) and the presence of free Na+, the hydrogel showed high ionic conductivity values at room temperature (10-2 S cm-1) as characterized by electrochemical impedance spectroscopy. OECTs made using this hydrogel as a source of ions showed performance that was equivalent to that of OECTs employing a liquid electrolyte. They also showed improved stability, with only a 3% drop in current after 6 h of operation. This hydrogel paves the way for the replacement of liquid electrolytes in high performance OECTs bringing about advantages in terms of device integration and protection.