Two-Stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders

ACS Chem Biol. 2020 Jun 19;15(6):1487-1496. doi: 10.1021/acschembio.0c00140. Epub 2020 Apr 16.

Abstract

Proteolysis targeting chimeras (PROTACs) have emerged as useful chemical probes and potential therapeutics by taking advantage of the ubiquitin-proteasome system to degrade intracellular disease-associated proteins. PROTACs are heterobifunctional molecules composed of a target protein ligand, E3 ubiquitin ligase ligand, and a linker between them. The generation of efficient PROTACs requires screening of many parameters, especially the lengths and types of the linkers. We report our proof-of-concept study using a two-stage strategy to facilitate the development of PROTACs against the estrogen receptor (ER). In stage one, a library of close to 100 PROTACs was synthesized by simply mixing a library of ERα ligands containing a hydrazide functional group at different positions with a preassembled library of E3 ligase ligands bearing different types and lengths of linkers with a terminal aldehyde group in a 1:1 ratio. Cell-based screening occurred without further purification, because the formation of the acylhydrazone linkage is highly efficient and produces water as the only byproduct. Compound A3 was the most potent ER degrader in two ER+ cell lines (DC50= ∼ 10 nM, Dmax= ≥ 95%). Stage two involved transformation to a more stable amide linker to generate a more drug-like molecule. The new compound, AM-A3, showed comparable biological activity (DC50 = 1.1 nM, Dmax = 98%) and induced potent antiproliferation (IC50= 13.2 nM, Imax= 69%) in MCF-7. This proof-of -concept study demonstrates that the two-stage strategy can significantly facilitate the development of PROTACs against ER without the tedious process of making large numbers of PROTACs one by one. It has the potential to be expanded to many other targets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chimera / metabolism*
  • Humans
  • Ligands
  • MCF-7 Cells
  • Proof of Concept Study
  • Proteasome Endopeptidase Complex / metabolism
  • Proteolysis
  • Receptors, Estrogen / metabolism*
  • Ubiquitin / metabolism

Substances

  • Ligands
  • Receptors, Estrogen
  • Ubiquitin
  • Proteasome Endopeptidase Complex