Whole-genome analysis of bacillus velezensis ZF2, a biocontrol agent that protects cucumis sativus against corynespora leaf spot diseases

3 Biotech. 2020 Apr;10(4):186. doi: 10.1007/s13205-020-2165-y. Epub 2020 Mar 30.

Abstract

Bacillus spp. have been widely described for their potentials to protect plants against pathogens. Here, we reported the whole genome sequence of Bacillus velezensis ZF2, which was isolated from the stem of a healthy cucumber plant. Strain ZF2 showed a broad spectrum of antagonistic activities against many plant bacterial and fungal pathogens, including the cucumber leaf spot fungus Corynespora cassiicola. The complete genome of B. velezensis ZF2 contained a 3,931,418-bp circular chromosome, with an average G + C content of 46.50%. Genome comparison revealed closest similarity between ZF2 and other B. velezensis strains. Genes homologous to 14 gene clusters for biosynthesis of secondary metabolites were identified in the ZF2 genome. Also identified were a number of genes involved in bacterial colonization, including the genes for motility, biofilm formation, flagella biosynthesis, and capsular biosynthesis. Numerous genes associated with plant-bacteria interactions, including cellulase or protease biosynthesis, and plant growth promotion were also identified in the ZF2 genome. Overall, our data will aid future studies of the biocontrol mechanisms of B. velezensis ZF2 and promote its application in vegetable disease control.

Keywords: Antagonistic activity; Bacillus velezensis; Biological control; Comparative genomic analysis; Secondary metabolites.