Piperine is a natural alkaloid with a wide range of biological functions. Natural phenolic compounds existed in many essential oils (EOs) are plant-derived aroma compounds with broad range of biological activities, however, their actions are slow, and they are typically unstable to light or heat, difficult to extract and so on. In order to find high-potential fungicides derived from piperine, a series of piperine-directed essential oil derivatives were designed and synthesized. The structures of all molecules were confirmed by satisfied spectral data, including 1H NMR, 13C NMR and ESIMS. The target compounds were screened for their potential fungicidal activities against six species of plant pathogen fungi, including Rhizoctonia solani, Fusarium graminearum, Phomopsis adianticola, Alternaria tenuis Nees, Phytophthora capsici and Gloeosporium theae-sinensis. Some of target compounds exhibited moderate and broad-spectrum activity against tested fungi compared to the parental piperine. Further studies have shown that some different concentrations of compounds have significant inhibitory activity against Alternaria tenuis Nees and Phytophthora capsici compared to commercial carbendazim, and compound 2b exhibited particularly significant broad-spectrum fungicidal activity.
Keywords: Essential oils; Fungicidal activity; Piperine; Synthesis.
© The Author(s) 2020.