Raising the bar: Can dual scanning improve our understanding of joint action?

Neuroimage. 2020 Aug 1:216:116813. doi: 10.1016/j.neuroimage.2020.116813. Epub 2020 Apr 7.

Abstract

Two-person neuroscience (2 ​PN) is a recently introduced conceptual and methodological framework used to investigate the neural basis of human social interaction from simultaneous neuroimaging of two or more subjects (hyperscanning). In this study, we adopted a 2 ​PN approach and a multiple-brain connectivity model to investigate the neural basis of a form of cooperation called joint action. We hypothesized different intra-brain and inter-brain connectivity patterns when comparing the interpersonal properties of joint action with non-interpersonal conditions, with a focus on co-representation, a core ability at the basis of cooperation. 32 subjects were enrolled in dual-EEG recordings during a computerized joint action task including three conditions: one in which the dyad jointly acted to pursue a common goal (joint), one in which each subject interacted with the PC (PC), and one in which each subject performed the task individually (Solo). A combination of multiple-brain connectivity estimation and specific indices derived from graph theory allowed to compare interpersonal with non-interpersonal conditions in four different frequency bands. Our results indicate that all the indices were modulated by the interaction, and returned a significantly stronger integration of multiple-subject networks in the joint vs. PC and Solo conditions. A subsequent classification analysis showed that features based on multiple-brain indices led to a better discrimination between social and non-social conditions with respect to single-subject indices. Taken together, our results suggest that multiple-brain connectivity can provide a deeper insight into the understanding of the neural basis of cooperation in humans.

Keywords: Connectivity; Cooperation; EEG; Graph theory; Hyperscanning; Joint actions; Social brain.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Cerebral Cortex / diagnostic imaging
  • Cerebral Cortex / physiology*
  • Connectome* / methods
  • Cooperative Behavior*
  • Electroencephalography* / methods
  • Humans
  • Male
  • Nerve Net / physiology*
  • Psychomotor Performance / physiology*
  • Social Interaction*
  • Young Adult