We present a system for recording in vivo electromyographic (EMG) signals from songbirds using hybrid polyimide-polydimethylsiloxane (PDMS) flexible multielectrode arrays (MEAs). 2-D electrodes with a diameter of 200, 125, and 50 μm and a center-to-center pitch of 300, 200, and 100 μm, respectively, were fabricated. 3-D MEAs were fabricated using a photoresist reflow process to obtain hemispherical domes utilized to form the 3-D electrodes. Biocompatibility and flexibility of the arrays were ensured by using polyimide and PDMS as the materials of choice for the arrays. EMG activity was recorded from the expiratory muscle group of anesthetized songbirds using the fabricated 2-D and 3-D arrays. Air pressure data were also recorded simultaneously from the air sac of the songbird. Together, EMG recordings and air pressure measurements can be used to characterize how the nervous system controls breathing and other motor behaviors. Such technologies can in turn provide unique insights into motor control in a range of species, including humans. An improvement of over 7× in the signal-to-noise ratio (SNR) is observed with the utilization of 3-D MEAs in comparison to 2-D MEAs.
Keywords: Electromyography; flexible multielectrode arrays (MEAs); polydimethylsiloxane (PDMS); polyimide; songbird.