Improved Limit on Neutrinoless Double-Beta Decay in ^{130} Te with CUORE

Phys Rev Lett. 2020 Mar 27;124(12):122501. doi: 10.1103/PhysRevLett.124.122501.

Abstract

We report new results from the search for neutrinoless double-beta decay in ^{130} Te with the CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds, and analysis improvements relative to our previous results. We observe a background of (1.38±0.07)×10^{-2} counts/(keV kg yr)) in the 0νββ decay region of interest and, with a total exposure of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7×10^{25} yr. We find no evidence for 0νββ decay and set a 90% credibility interval Bayesian lower limit of 3.2×10^{25} yr on the ^{130} Te half-life for this process. In the hypothesis that 0νββ decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.