Confined Phases of One-Dimensional Spinless Fermions Coupled to Z_{2} Gauge Theory

Phys Rev Lett. 2020 Mar 27;124(12):120503. doi: 10.1103/PhysRevLett.124.120503.

Abstract

We investigate a quantum many-body lattice system of one-dimensional spinless fermions interacting with a dynamical Z_{2} gauge field. The gauge field mediates long-range attraction between fermions resulting in their confinement into bosonic dimers. At strong coupling we develop an exactly solvable effective theory of such dimers with emergent constraints. Even at generic coupling and fermion density, the model can be rewritten as a local spin chain. Using the density matrix renormalization group the system is shown to form a Luttinger liquid, indicating the emergence of fractionalized excitations despite the confinement of lattice fermions. In a finite chain we observe the doubling of the period of Friedel oscillations which paves the way towards experimental detection of confinement in this system. We discuss the possibility of a Mott phase at the commensurate filling 2/3.