Speckle tracking echocardiography (STE) is a clinical tool to noninvasively assess regional myocardial function through the quantification of regional motion and deformation. Even if the time resolution of STE can be improved by high-frame-rate (HFR) imaging, dedicated HFR STE algorithms have to be developed to detect very small interframe motions. Therefore, in this article, we propose a novel 2-D STE method, purposely developed for HFR echocardiography. The 2-D motion estimator consists of a two-step algorithm based on the 1-D cross correlations to separately estimate the axial and lateral displacements. The method was first optimized and validated on simulated data giving an accuracy of ~3.3% and ~10.5% for the axial and lateral estimates, respectively. Then, it was preliminarily tested in vivo on ten healthy volunteers showing its clinical applicability and feasibility. Moreover, the extracted clinical markers were in the same range as those reported in the literature. Also, the estimated peak global longitudinal strain was compared with that measured with a clinical scanner showing good correlation and negligible differences (-20.94% versus -20.31%, p -value = 0.44). In conclusion, a novel algorithm for STE was developed: the radio frequency (RF) signals were preferred for the axial motion estimation, while envelope data were preferred for the lateral motion. Furthermore, using 2-D kernels, even for 1-D cross correlation, makes the method less sensitive to noise.