The heat dissipation limit theory predicts that lactating female mice consuming diets with lower specific dynamic action (SDA) should have enhanced lactation performance. Dietary fat has lower SDA than other macronutrients. Here we tested the effects of graded dietary fat levels on lactating Swiss mice. We fed females five diets varying in fat content from 8.3 to 66.6%. Offspring of mothers fed diets of 41.7% fat and above were heavier and fatter at weaning compared with those of 8.3 and 25% fat diets. Mice on dietary fat contents of 41.7% and above had greater metabolizable energy intake at peak lactation (8.3%: 229.4±39.6; 25%: 278.8±25.8; 41.7%: 359.6±51.5; 58.3%: 353.7±43.6; 66.6%: 346±44.7 kJ day-1), lower daily energy expenditure (8.3%: 128.5±16; 25%: 131.6±8.4; 41.7%: 124.4±10.8; 58.3%: 115.1±10.5; 66.6%: 111.2±11.5 kJ day-1) and thus delivered more milk energy to their offspring (8.3%: 100.8±27.3; 25%: 147.2±25.1; 41.7%: 225.1±49.6; 58.3%: 238.6±40.1; 66.6%: 234.8±41.1 kJ day-1). Milk fat content (%) was unrelated to dietary fat content, indicating that females on higher fat diets (>41.7%) produced more rather than richer milk. Mothers consuming diets with 41.7% fat or above enhanced their lactation performance compared with those on 25% or less, probably by diverting dietary fat directly into the milk, thereby avoiding the costs of lipogenesis. At dietary fat contents above 41.7% they were either unable to transfer more dietary fat to the milk, or they chose not to do so, potentially because of a lack of benefit to the offspring that were increasingly fatter as maternal dietary fat increased.
Keywords: Asymptotic food intake; Graded dietary fat levels; Heat dissipation limitation; Laboratory mouse; Milk production.
© 2020. Published by The Company of Biologists Ltd.