Now that colloidal nanocrystals (NCs) have been integrated as green and red sources for liquid crystal displays, the next challenge for quantum dots is their use in electrically driven light-emitting diodes (LEDs). Among various colloidal NCs, nanoplatelets (NPLs) have appeared as promising candidates for light-emitting devices because their two-dimensional shape allows a narrow luminescence spectrum, directional emission, and high light extraction. To reach high quantum efficiency, it is critical to grow core/shell structures. High temperature growth of the shells seems to be a better strategy than previously reported low-temperature approaches to obtain bright NPLs. Here, we synthesize CdSe/CdZnS core/shell NPLs whose shell alloy content is tuned to optimize the charge injection in the LED structure. The obtained LED has exceptionally low turn-on voltage, long-term stability (>3100 h at 100 cd m-2), external quantum efficiency above 5%, and luminance up to 35,000 cd m-2. We study the low-temperature performance of the LED and find that there is a delay of droop in terms of current density as temperature decreases. In the last part of the paper, we design a large LED (56 mm2 emitting area) and test its potential for LiFi-like communication. In such an approach, the LED is not only a lightning source but also used to transmit a communication signal to a PbS quantum dot solar cell used as a broadband photodetector. Operating conditions compatible with both lighting and information transfer have been identified. This work paves the way toward an all NC-based communication setup.
Keywords: efficiency droop; electronic transport; light-emitting diode; nanocrystal-based communication; nanoplatelets.