Genetic Diversity and Identification of Wilt and Root Rot Pathogens of Tomato in China

Plant Dis. 2020 Jun;104(6):1715-1724. doi: 10.1094/PDIS-09-19-1873-RE. Epub 2020 Apr 15.

Abstract

Fungal wilt and root rot diseases affecting tomato have become prevalent in China in recent years and have caused considerable damage. In 2016 to 2018, symptoms of putative wilt and root rot diseases were observed in several locations in tomato cultivars with resistance to Fusarium oxysporum f. sp. lycopersici races 1 and 2. The objective of this study was to identify the causative agents of wilt and root rot of tomato in China and provide a basis for disease prevention and resistance breeding programs. Based on DNA sequence analyses of the internal transcribed spacer (ITS) region, 91 isolates from the roots of tomato plants showing symptoms of wilt and root rot were identified, including F. oxysporum (64 isolates), Fusarium solani (11 isolates), Fusarium proliferatum (2 isolates), Fusarium graminearum (2 isolates), Fusarium equiseti (1 isolate), Pythium aphanidermatum (6 isolates), Ascomycota sp. (2 isolates), and Plectosphaerella cucumerina (3 isolates). F. oxysporum accounted for 70.33% of the isolates obtained. In this case, using PCR-based methods for differentiation of F. oxysporum, we identified several formae speciales and races of F. oxysporum: 7 isolates were identified as F. oxysporum f. sp. lycopersici race 1, 2 isolates as F. oxysporum f. sp. lycopersici race 2, 35 isolates as F. oxysporum f. sp. lycopersici race 3, and 13 isolates as F. oxysporum f. sp. radicis-lycopersici. Pathogenicity tests revealed 55 isolates of tomato wilt and root rot pathogens to be virulent. This study demonstrated that F. oxysporum f. sp. lycopersici race 3 was the most widespread and highly virulent race among these tomato pathogens in China, followed by F. oxysporum f. sp. radicis-lycopersici. Therefore, the development of resistant varieties of tomato against F. oxysporum f. sp. lycopersici race 3 and F. oxysporum f. sp. radicis-lycopersici would aid efforts to develop effective disease management strategies.

Keywords: fungi; pathogen detection; vegetables.

MeSH terms

  • China
  • Fusarium*
  • Genetic Variation
  • Plant Diseases
  • Solanum lycopersicum*