Mussel-Inspired Alternating Copolymer as a High-Performance Adhesive Material Both at Dry and Under-Seawater Conditions

Macromol Rapid Commun. 2020 May;41(10):e2000055. doi: 10.1002/marc.202000055. Epub 2020 Apr 16.

Abstract

Marine mussels have the ability to cling to various surfaces at wet or underwater conditions, which inspires the research of catechol-functionalized polymers (CFPs) to develop high-performance adhesive materials. However, these polymeric adhesives generally face the problems of complex synthetic route, and it is still high challenging to prepare CFPs with excellent adhesive performance both at dry and underwater conditions. Herein, a mussel-inspired alternating copolymer, poly(dopamine-alt-2,2-bis(4-glycidyloxyphenyl)propane) (P(DA-a-BGOP)), is synthesized in one step by using commercially available monomers through epoxy-amino click chemistry. The incorporation of polar groups and rigid bisphenol A structures into the polymer backbone enhances the cohesion energy of polymer matrix. The alternating polymer structure endows the polymers with high catechol content and controlled polymer sequence. As a result, P(DA-a-BGOP) exhibits a strong bonding strength as high as 16.39 ± 2.13 MPa on stainless steel substrates after a hot pressing procedure and displays a bonding strength of 1.05 ± 0.05 MPa on glass substrates at an under-seawater condition, which surpasses most commercial adhesives.

Keywords: adhesives; alternating copolymers; catechol; mussels.

MeSH terms

  • Adhesives / chemical synthesis
  • Adhesives / chemistry*
  • Animals
  • Biomimetic Materials / chemical synthesis
  • Biomimetic Materials / chemistry*
  • Bivalvia
  • Click Chemistry
  • Molecular Structure
  • Polymers / chemical synthesis
  • Polymers / chemistry*
  • Seawater / chemistry*

Substances

  • Adhesives
  • Polymers