The intracellular carbon metabolic flux pathways of denitrifying bacteria under aerobic conditions remain unclear. Here, a newly strain LSL251 was identified as Paracoccus thiophilus. Strain LSL251 removed 94.79% and 98.78% of total organic carbon and nitrate. 74.66% of nitrogen in culture system was lost as gaseous nitrogen. Moreover, 13C stable isotopic labeling and metabolic flux analyses revealed that the primary intracellular carbon metabolic pathways were the Entner-Doudoroff pathway and the tricarboxylic acid (TCA) cycle. Electrons are primarily donated as direct electron donor-NADH through the TCA cycle. Furthermore, response surface methodology modeled that the highest total nitrogen removal efficiency was 98.43%, where the optimal parameters were C/N ratio of 8.00, 32.98 °C, 50.18 rpm, and initial pH of 7.73. All together, these results have shed new lights on intracellular central carbon metabolic distribution and flux pathways of aerobic denitrifying bacteria.
Keywords: (13)C-MFA; Aerobic denitrification; Carbon metabolic distribution; Paracoccus thiophilus.
Copyright © 2020 Elsevier Ltd. All rights reserved.