Spring greening has been widely observed across the Northern Hemisphere (NH) using a remotely sensed vegetation index (e.g., the normalized difference vegetation index, NDVI). However, there is still a debate on the ecological effects of spring greening on seasonal carbon and water budgets. This study jointly investigated the concurrent and lagged effects of spring greening on carbon gain (gross primary productivity, GPP) and water loss (evapotranspiration, ET) in the summer-active ecosystems at mid and high latitudes of NH using remote sensing and multimodel ensemble data during 1982-2013. The results showed that the collective promotion of spring greening to concurrent GPP and ET is widespread despite variations in magnitude and significance. Both beneficial and adverse lagged effects of spring greening on summer GPP commonly appear with an obvious spatial heterogeneity and difference among climate-plant types. However, the expected significant suppression of spring greening to summer GPP was rarely observed even in the areas where spring ET was significantly promoted by spring greening. Nevertheless, when drought was taken into account, the response patterns of spring water use to spring greening varied to some extent, and the adverse lagged effect of spring greening to summer GPP appeared or strengthened in some regions, especially during the years with dry summer. Given the predicted warming of the climate and more frequent climatic extremes, the adverse effect of spring greening should be given more attention.
Keywords: Carbon gain; Lagged effect; Northern hemisphere; Remote sensing; Spring greening; Water loss.