An Improved Rosin Transfer Process for the Reduction of Residue Particles for Graphene

Nanoscale Res Lett. 2020 Apr 17;15(1):85. doi: 10.1186/s11671-020-03312-1.

Abstract

In this work, an improved rosin transfer process is initiated. An anisole coating is introduced based on the rosin transfer process to reduce the residue particles on the surface of transferred graphene. Rosin/graphene and anisole/rosin/graphene samples are handled without baking and with baking at different temperatures, i.e., 100 °C, 150 °C, and 200 °C. Atomic force microscopy (AFM) and Raman spectroscopy are employed to characterize the surface properties of transferred graphene. The removal of the protective rosin layer and anisole/rosin layers without baking is found to be more effective and beneficial compared to the conventional PMMA transfer process. Furthermore, better results in terms of reduced surface roughness and residue particles are accomplished by introducing anisole in the improved rosin transfer process. Uniform and low sheet resistance (Rsh) is also observed across transferred graphene using this improved process.

Keywords: Graphene; Rosin transfer process; Sheet resistance.