Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging

Nat Nanotechnol. 2020 May;15(5):398-405. doi: 10.1038/s41565-020-0642-4. Epub 2020 Apr 20.

Abstract

Ischaemic heart disease evokes a complex immune response. However, tools to track the systemic behaviour and dynamics of leukocytes non-invasively in vivo are lacking. Here, we present a multimodal hot-spot imaging approach using an innovative high-density lipoprotein-derived nanotracer with a perfluoro-crown ether payload (19F-HDL) to allow myeloid cell tracking by 19F magnetic resonance imaging. The 19F-HDL nanotracer can additionally be labelled with zirconium-89 and fluorophores to detect myeloid cells by in vivo positron emission tomography imaging and optical modalities, respectively. Using our nanotracer in atherosclerotic mice with myocardial infarction, we observed rapid myeloid cell egress from the spleen and bone marrow by in vivo 19F-HDL magnetic resonance imaging. Concurrently, using ex vivo techniques, we showed that circulating pro-inflammatory myeloid cells accumulated in atherosclerotic plaques and at the myocardial infarct site. Our multimodality imaging approach is a valuable addition to the immunology toolbox, enabling the study of complex myeloid cell behaviour dynamically.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atherosclerosis / diagnostic imaging
  • Atherosclerosis / pathology
  • Cell Tracking / methods
  • Crown Ethers / analysis
  • Female
  • Fluorescent Dyes / analysis
  • Fluorine / analysis
  • Magnetic Resonance Imaging / methods
  • Mice
  • Mice, Inbred C57BL
  • Multimodal Imaging / methods
  • Myeloid Cells / pathology*
  • Myocardial Infarction / diagnostic imaging
  • Myocardial Infarction / pathology
  • Myocardial Ischemia / diagnostic imaging*
  • Myocardial Ischemia / pathology
  • Optical Imaging / methods
  • Positron-Emission Tomography / methods
  • Radioisotopes / analysis
  • Zirconium / analysis

Substances

  • Crown Ethers
  • Fluorescent Dyes
  • Radioisotopes
  • Fluorine
  • Zirconium
  • Zirconium-89