Disulfide isomerase ERp57 improves the stability and immunogenicity of H3N2 influenza virus hemagglutinin

Virol J. 2020 Apr 21;17(1):55. doi: 10.1186/s12985-020-01325-x.

Abstract

Background: Hemagglutinin (HA), as the surface immunogenic protein, is the most important component of influenza viruses. Previous studies showed that the stability of HA was significant for HA's immunogenicity, and many efforts have been made to stabilize the expressed HA proteins.

Methods: In this study, the protein disulfide isomerases (PDIs) were investigated for the ability to improve the stability of HA protein. Two members of the PDIs family, PDI and ERp57, were over-expressed or down-expressed in 293 T cells. The expression of H3 HA and PDIs were investigated by real-time qPCR, western-blot, immunofluorescence assay, and flow cytometry. The stability of HA was investigated by western-blot under non-reducing condition. Moreover, BALB/c mice were immunized subcutaneously twice with the vaccine that contained HA proteins from the ERp57-overexpressed and conventional 293 T cells respectively to investigate the impact of ERp57 on the immunogenicity of H3N2 HA.

Results: The percentage of the disulfide-bonded HA trimers increased significantly in the PDIs-overexpressed 293 T cells, and ERp57 was more valid to the stability of HA than PDI. The knockdown of ERp57 by small interfering RNA significantly decreased the percentage of the disulfide-bonded HA trimers. HA proteins from ERp57-overexpressed 293 T cells stimulated the mice to generate significantly higher HA-specific IgG against H1N1 and H3N2 viruses than those from the conventional cells. The mice receiving H3 HA from ERp57-overexpressed 293 T cells showed the better resistance against H1N1 viruses and the higher survival rate than the mice receiving H3 HA from the conventional cells.

Conclusion: ERp57 could improve the stability and immunogenicity of H3N2 HA.

Keywords: ERp57; Hemagglutinin; Immunogenicity; Protein disulfide isomerase; Stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibodies, Viral / blood
  • Antibodies, Viral / immunology
  • Female
  • HEK293 Cells
  • Hemagglutinin Glycoproteins, Influenza Virus / administration & dosage
  • Hemagglutinin Glycoproteins, Influenza Virus / immunology*
  • Humans
  • Immunogenicity, Vaccine
  • Influenza A Virus, H1N1 Subtype / immunology
  • Influenza A Virus, H3N2 Subtype / immunology*
  • Influenza Vaccines / immunology*
  • Mice
  • Mice, Inbred BALB C
  • Orthomyxoviridae Infections / immunology
  • Protein Disulfide-Isomerases / genetics*
  • Protein Disulfide-Isomerases / immunology
  • Protein Stability
  • Vaccination

Substances

  • Antibodies, Viral
  • Hemagglutinin Glycoproteins, Influenza Virus
  • Influenza Vaccines
  • Protein Disulfide-Isomerases
  • PDIA3 protein, human