Purpose: We sought to investigate the performance of high resolution (HR) diffusion-weighted imaging (DWI) using readout-segmented echo-planar imaging (rs-EPI), compared with high-resolution contrast-enhanced MRI (HR CE-MRI) in terms of morphological accuracy, on the basis of the Breast Imaging and Reporting and Data System (BI-RADS) MRI descriptors and lesion size.
Methods: This retrospective study included the image data of 94 patients with surgically confirmed malignant breast lesions who had undergone high resolution diffusion-weighted imaging (HR-DWI) and HR CE-MRI. Two radiologists blinded to the final diagnosis independently identified the lesions on HR-DWI, described the morphology of the lesions according to BI-RADS descriptors, and measured lesion size. HR CE-MRI was subsequently evaluated using the same procedure. The inter-method agreement of the morphology was assessed using kappa statistics. Correlation on size was also assessed.
Results: Reader A detected 79 mass lesions and 37 non-mass lesions on HR-DWI and HR CE-MRI. Reader B detected 81 mass lesions and 33 non-mass lesions on HR-DWI and HR CE-MRI. Very high agreement (kappa = 0.81-0.89, p < .05) was observed in the shape and margin assessment of mass lesions, where agreement on internal enhancement/signals was moderate to substantial (kappa = 0.43-0.61, p < .05). Disagreement was mostly seen in the evaluation of rim enhancement. High agreement was observed for non-mass lesion distribution (kappa = 0.76-0.84, p < .05), and agreement on internal enhancement/signals was moderate to fair (kappa = 0.34-0.49, p < .05). Agreement among heterogeneous, clumped, and clustered-ring patterns was variable. Size assessment showed very strong correlation both in mass (Spearman's rho = 0.90-0.96, p < .0001) and non-mass lesions (Spearman's rho = 0.86, p < .0001).
Conclusions: The findings in morphology and lesion extent showed high agreement between HR-DWI and HR CE-MRI for malignant breast lesions. These results imply the potential of applying HR-DWI for evaluation of malignant breast lesions using BI-RADS MRI.
Keywords: Breast neoplasms; Diffusion-weighted imaging; High-resolution; Magnetic resonance imaging; Non-mass lesions.
Copyright © 2020 Elsevier Inc. All rights reserved.