E2F1 Regulates Adipocyte Differentiation and Adipogenesis by Activating ICAT

Cells. 2020 Apr 21;9(4):1024. doi: 10.3390/cells9041024.

Abstract

Wnt/β-catenin is a crucial repressor of adipogenesis. We have shown that E2 promoter binding factor 1 (E2F1) suppresses Wnt/β-catenin activity through transactivation of β-catenin interacting protein 1 (CTNNBIP1), also known as inhibitor of β-catenin and TCF4 (ICAT) in human colorectal cancers. However, it remains unknown whether ICAT is required for E2F1 to promote differentiation by inhibiting β-catenin activity in pre-adipocytes. In the present study, we found that 1-methyl-3-isobutylxanthine, dexamethasone, and insulin (MDI)-induced differentiation and lipid accumulation in 3T3-L1 pre-adipocytes was reversed by activation of β-catenin triggered by CHIR99021, a GSK3β inhibitor. Intriguingly, we observed a reduced protein level of E2F1 and ICAT at a later stage of pre-adipocytes differentiation. Importantly, overexpression of ICAT in 3T3-L1 pre-adipocytes markedly promote the adipogenesis and partially reversed the inhibitory effect of CHIR99021 on MDI-induced adipogenesis and lipid accumulation by regulating adipogenic regulators and Wnt/β-catenin targets. Moreover, pre-adipocytes differentiation induced by MDI were markedly inhibited in siE2F1 or siICAT transfected 3T3-L1 cells. Gene silencing of ICAT in the E2F1 overexpressed adipocytes also inhibited the adipogenesis. These data indicated that E2F1 is a metabolic regulator with an ability to promote pre-adipocyte differentiation by activating ICAT, therefore represses Wnt/β-catenin activity in 3T3-L1 cells. We also demonstrated that ICAT overexpression did not affect oleic acid-induced lipid accumulation at the surface of Hela and HepG2 cells. In conclusion, we show that E2F1 is a critical regulator with an ability to promote differentiation and adipogenesis by activating ICAT in pre-adipocytes.

Keywords: 3T3-L1; E2F1; ICAT; Wnt/β-catenin; adipogenesis; differentiation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 3T3-L1 Cells
  • Adipocytes / cytology
  • Adipocytes / drug effects*
  • Adipogenesis / drug effects*
  • Animals
  • Cell Differentiation / drug effects
  • E2F1 Transcription Factor / metabolism*
  • Humans
  • Mice
  • Pyridines / pharmacology
  • Pyrimidines / pharmacology
  • Wnt Signaling Pathway / drug effects
  • Wnt Signaling Pathway / genetics
  • beta Catenin / drug effects
  • beta Catenin / metabolism

Substances

  • Chir 99021
  • E2F1 Transcription Factor
  • Pyridines
  • Pyrimidines
  • beta Catenin