The most challenging issue for breast cancer (BC) patients is metastasis to other organs because current therapies do not prevent or eliminate metastatic BC. Here, we show that SM-164, a small molecule inhibitor, which degrades inhibitor of apoptosis proteins (IAPs), eliminated early-stage metastases and reduced progression of advanced BC metastasis from MDA-MB-231 BC cells in bones and lungs of nude mice. Mechanistically, SM-164-induced BC cell death is TNFα-dependent, with TNFα produced by IL-4-polarized macrophages triggering MDA-MB-231 cell apoptosis in combination with SM-164. SM-164 also inhibited expression of RANKL, which mediates interactions between metastatic BC and host microenvironment cells and induces osteoclast-mediated osteolysis. SM-164 did not kill adriamycin-resistant BC cells, while adriamycin inhibited SM-164-resistant BC cell growth, similar to parental cells. We conclude that SM-164 is a promising therapeutic agent for early stage bone and lung metastasis from triple-negative breast cancer that should be given prior to conventional chemotherapy.