Antheraea mylitta, a tropical non-mulberry silkworm, is cultivated for tasar silk production in India. Several defense molecules including few antimicrobial peptides (AMPs) and proteins have been identified from this insect. Here, we have isolated and purified an antimicrobial tri-peptide by sequential chromatographic separation procedures. The amino acid sequence of the peptide was determined as NH2-Gln-Ala-Lys-COOH (QAK) using MALDI MS/MS fragmentation analysis. Further, the peptide was synthesized in vitro following solid phase chemistry of peptide synthesis and acetylated by acetic anhydride reaction. Antimicrobial activities of non-acetylated and acetylated QAK were tested against both Escherichia coli and Staphylococcus aureus bacteria. Acetylated peptide inhibited bacterial growth more effectively and its minimum inhibitory concentration (MICs) was found lower than non-acetylated peptide. SEM studies revealed more membrane damage and release of intracellular materials like β-galactosidase enzyme from acetylated peptide treated bacteria in comparison to non-acetylated QAK. At MIC, acetylated peptide did not show any significant hemolytic activity against rabbit erythrocytes. The results suggest that acetylated-QAK is a promising new antimicrobial peptide and can be used for therapeutic purpose.
Keywords: Acetylation; Antheraea mylitta; Antibacterial activity; Antimicrobial peptide; Hemolymph.
Copyright © 2020 Elsevier Inc. All rights reserved.