The occurrence and air-sea gas exchange of hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes were determined in the Northwest Pacific Ocean (NWP) in spring to elucidate their current pollution status and fate. ΣHCHs, ΣDDTs, and Σchlordanes in air (sum of gaseous and aerosol phase) ranged from 9.37 to 102, from 1.73 to 12.8, and from 0.24 to 14.9 pg/m3, respectively, with their dissolved levels being 30.7-518, 7.10-80.5, and 0.25-7.10 pg/L, respectively. HCHs, DDTs, and chlordanes cause substantial contamination of the air and seawater of the East China Sea (ECS), indicating significant OCP inputs from China. Isomer ratios of HCHs and DDTs provided a fingerprint of East Asian emissions of legacy OCPs, with the pollution profiles of HCHs and DDTs dominated by lindane and combined dicofol-type and weathered technical DDTs, respectively. The former result is consistent with the apparent decline in air α-HCH levels over the ECS. Different from still net deposition of gaseous α- and γ-HCH in the NWP, outgassing of trans-chlordane, cis-chlordane, and DDTs other than dicofol-sourced o,p'-DDT was indicated. This observation attributes to intensive historical usage of technical HCHs and the prevalence of lindane pollution in East Asia, and demonstrates the transitioning role of seawater as a source for residual OCPs in the East Asia-NWP region. Significant subcooled liquid vapor pressure-based relationships for legacy OCPs were identified mainly in marine air masses; these were different from land-sourced polybrominated diphenyl ethers, and suggested a heterogeneous role of ocean- and land-based sources in atmospheric partitioning of these pollutants.
Keywords: Air–sea gas exchange; East Asia; Northwest Pacific Ocean; OCPs.
Copyright © 2020 Elsevier B.V. All rights reserved.