In the last years, there has been a significant growth in the literature exploring the pathophysiology of vascular cognitive impairment (VCI). As an "umbrella term" encompassing any degree of vascular-related cognitive decline, VCI is deemed to be the most common cognitive disorder in the elderly, with a significant impact on social and healthcare expenses. Interestingly, some of the molecular, biochemical, and electrophysiological abnormalities detected in VCI seem to correlate with disease process and progression, eventually promoting an adaptive plasticity in some patients and a maladaptive, dysfunctional response in others. However, the exact relationships between vascular lesion, cognition, and neuroplasticity are not completely understood. Recent findings point out also the possibility to identify a panel of markers able to predict cognitive deterioration in the so-called "brain at risk" for vascular or mixed dementia. This will be of pivotal importance when designing trials of disease-modifying drugs or non-pharmacological approaches, including non-invasive neuromodulatory techniques. Taken together, these advances could make VCI a potentially preventable cause of both vascular and degenerative dementia in late life. This review provides a timely update on the recent serological, cerebrospinal fluid, histopathological, imaging, and neurophysiological studies on this "cutting-edge" topic, including the limitations, future perspectives and translational implications in the diagnosis and management of VCI patients.
Keywords: biochemistry; cognition; imaging; neuropathology; neurophysiology; plasticity; small vessel disease; treatment; vascular dementia.